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ABSTRACT

Modern computing advances allow the aerospace controls engineer the ability

to design, test, and implement automatic control systems for air vehicles with breath

taking speed and accuracy. This work examines the automation of the hardware-

in-the-loop testing and implementaio- i, t-1nomous controllers for Unmanned Air

Vehicles. Extraordinary interest is genera ,i in this subject considering automation

results in hardware-in-the-loop testing within days of completing a controller design.

The entire automation process is presented, from desigp Mf the controller to imple-

mentation on a particular control platform to hardware-in-the-loop testing of the

controller. This accomplishes control design and implemention in a mat Xer of months

compared to a few years or more before automation.

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced 0
Jastification ..................

By ........
Dist. ibution I

Availability Codes

Avail andjor
Dist Special

111

I II i I



TABLE OF CONTENTS

1. INTRODUCTION ............................. 1

II. DEVELOPING EQUATIONS OF MOTION ............ 6

A. BACKGROUND ............................ 6

B. DESCRIPTION OF AROD ...................... 6

C. EQUATIONS OF MOTION ...................... 9

1. N otation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2. Coordinate Systems ........................ 10

3. Spatial Orientation Using Euler Angles ............. 13

4. Derivation of the Equations of Motion ... ............. 16

a. Linear Equations ...................... 16

b. Angular Equations ..................... 17

c. State Equations ....................... 19

d. Forces and Moments .................... 20

e. Complete Equations of Motion ............... 25

III. COMPUTER MODELING ....................... 26

A. BASIC NONLINEAR MODEL .................... 27

1. Basic SIMULINK Model ...................... 27

2. Basic SystemBuild Model .................... 27

B. DISCRETE MODEL .......................... 29

C. TESTING THE MODEL ........................ 30

1. Testing the SIMULINK Model ................... 30

2. Testing the SystemBuild Model ................. 30

iv



IV. DESIGN AND SOFTWARE TESTING OF THE CONTROLLER 31

A. HOOSYNTHESIS MODEL ....................... 31

B. DISCRETE CONTROLLER ...................... 33

1. SystemBuild Discrete Controller ................. 33

C. CLOSED-LOOP SOFTWARE TESTING .............. 34

1. SystemBuild Testing . ....................... 34

2. AC100 Model C30 Testing .................... 35

V. MODELING ACTUATORS AND SENSORS ............ 36

A. ACTUATOR STEP RESPONSE ................... 36

B. ACTUATOR FREQUENCY RESPONSE .............. 37

C. ACTUATOR SENSORS ........................ 38

D. UNDER-SAMPLING .......................... 42

E. ANTI-ALIASING ............................ 44

VI. HARDWARE-IN-THE-LOOP TESTING .............. 47

A. PREVIOUS TEST SETUP ....................... 47

B. AC100 GRAPHICAL USER INTERFACE .............. 49

1. Interactive Animation ....................... 51

2. Hardware Connection Editor ................... 53

a. Serial Connections ...................... 55

b. Analog-to-Digital Connections ............... 55

c. Pulse Width Modulation Connections ........... 56

3. Sensor Calibration ........................ 57

4. Data Acquisition Editor ..................... 59

C. CONNECTING THE HARDWARE .................. 61

VII. RESULTS, CONCLUSIONS, AND RECOMMENDATIONS.. 65

v



A. HARDWARE-IN-THE-LOOP TEST RESULTS.............. 65

B. CONCLUSIONS................................... 66

C. RECOMMENDATIONS.............................. 67

APPENDIX A. MATLAB FILES............................ 72

A. GETSXDOT.M.................................... 72

B. CONSTVAL.M.................................... 78

APPENDIX B. MATRIXX BLOCK DIAGRAMS............... 80

A. AROD SystemBuild BLOCK DIAGRAMS.................. 80

LIST OF REFERENCES.................................... 94

INITIAL DISTRIBUTION LIST............................... 97

vi



LIST OF TABLES

2.1 PHYSICAL CHARACTERISTICS OF AROD ................ 8

2.2 VANE DEFLECTION COMBINATIONS FOR POSITIVE ANGLES 8

6.1 C30 HARDWARE MODULE NUMBERS ............... 55

6.2 SERVO MOTOR WIRING ....................... 63

7.1 PITCH AND YAW DISTURBANCES IN RADIANS ........... 66

vii



LIST OF FIGURES

2.1 Airborne Remotely Operated Device, AROD ................... 7

2.2 AROD Direction of Positive Vane Deflections .................. 9

2.3 Coupling Between Altitude and Attitude ...................... 10

2.4 Relative Position of Coordinate Systems ...................... 11

2.5 Y-Z-X Euler Angle Rotation Sequence ...................... 14

3.1 SIMULINK Block Diagram of the Equations Of Motion ............ 28

3.2 Transformation of an Integrator from Continuous Time to Discrete Time 29

4.1 H,, Synthesis Model ........ ........................... 32

4.2 Closed-Loop Block Diagram ...... ....................... 35

5.1 Typical Step Response of an Underdamped System .............. 37

5.2 Step Response of Actuator and Second Order Model ............. 38

5.3 Frequency Response of an Actuator at 3 Hertz ................. 39

5.4 Fourth Order Actuator Model ....... ...................... 39

5.5 Step Response of Actuator and Fourth Order Model ............. 40

5.6 Actuator Sensors ........ ............................. 41

5.7 Modified Actuator Sensors ....... ........................ 42

5.8 Noise Comparison of Actuator Sensors ..... ................. 43

5.9 Under-Sampling of a Continuous Time Signal ................. 44

5.10 Example of a Continuous Time Signal and Aliasing .............. 45

6.1 Previous Setup for Hardware-In-The-Loop Simulation ........... 48

6.2 Configuration of the Data Acquisition Cards on the 386 PC ..... .. 48

viii



6.3 Configuration of the Data Acquisition Cards on the 486 PC ..... .. 49

6.4 AC100 Graphical User Interface ........................... 51

6.5 Interactive Animation Display for AROD Controller ............. 52

6.6 Hardware Connection Editor ............................. 54

6.7 Timing Example for Pulse Width Modulation ................. 56

6.8 Interactive Animation Calibration Screen ..................... 58

6.9 Data Acquisition Editor ....... ......................... 60

6.10 AC100 Model C30 Hardware-In-The-Loop Setup ............... 62

6.11 Connector on end of Wiring Harness Tether ................... 63

6.12 AC100 Model C30 Hardware-In-The-Loop Test Wiring Diagram . . . 64

7.1 Comparison of Bandwidth for Controllers ..................... 69

7.2 Disturbance Rejection for Old Controller ...................... 70

7.3 Disturbance Rejection for New Controller ..................... 71

B. 1 Four Actuator Superblock ....... ........................ 83

B.2 Single Actuator Superblock ....... ....................... 84

B.3 Angular Velocity Equation Superblock ...................... 85

B.4 Discrete Controller Superblock ............................ 86

B.5 Anti-Aliasing Filters Superblock ........................... 87

B.6 AROD Kinematics Superblock ............................ 88

B.7 Linear Velocity Equation Superblock ...... .................. 89

B.8 Compute l,m, and n Superblock ........................... 90

B.9 AROD Model and Controller Superblock ...................... 91

B.10 Single Vane Superblock ................................. 92

B.11 Four Vane Superblock ........ .......................... 93

ix



ACKNOWLEDGMENT

I would like to thank the many people who contributed to this thesis in their

own individual ways. Dr. I. I. Kaminer for his guidance, teaching, and forethought

in developing an outstanding avionics laboratory. Dr. D. J. Collins and Dr. R. M.

Howard for their professional counsel. CDR. Duym for his consideration and genuine

concern for my career. Ken Reyneveld and Paul Schmidt at Integrated Systems, Inc.

for their technical support in answering seemingly millions of questions. Most of all.

I would like to thank my wife Julie for understanding the least while sacrificing the

most.

x



I. INTRODUCTION

The aeronautical controls engineer of the 90's can design a dynamic aircraft

model, verify its accuracy, design a control system, and implement the controller on

a computer in a matter of a few months. Application software tools such as MATLAB

with SIMULINK and MATRIXx with SystemBuild allow the design to be completed

and tested at the block diagram level. In particular, Autogen and AC100 products

developed by Integrated Systems, Incorporated allow for direct conversion of the

block diagram to a fully implemented control system. This system can be tested

real-time with hardware-in-the-loop while recording any or all of the state variables

to verify performance. Before discussing the automation of the design process in

detail, a brief outline of each step follows.

The first step in the design process is to create a high fidelity nonlinear model

of the aircraft which can be reliably trimmed and linearized throughout the full

spectrum of required flight conditions. Such modeling is completed in four stages:

"* Developing the equations of motion. Sum all of the forces and moments involved

and write the equations in terms of states to allow for easy convertion into a

block diagram.

"* Creating a nonlinear model. Create a block diagram representation of these

equations.

"* Creating a linear model. Trim the nonlinear model about the desired trim point

and then linearize the model to obtain a linear model.



* Validating the model. Use the data from an independent source to validate the

model.

The next step is to design a feedback controller. This is typically ar itera-

tive procedure beginning with the design requirements. Usually requirements will

be placed by the designer irt terms of response time and overshoot for the desired

controller. For example a heading controller may be required to achieve a ten degree

heading change within 30 seconds and have a maximum overshoot of one degree.

With the requirements on hand, the control design steps are:

"* Building a control synthesis model. The designer chooses which sensors to use

and creates a synthesis model with the desired command inputs using the linear

model.

"* Computing the control gain. A cost function is defined by the designer de-

pending on the specified requirements and the method chosen for computing

the controller. The control gain is then calculated. The methods for computing

this gain include:

- Linear Quadratic Regulator Theory

- Hoo Theory

"* Check the command and control loop bandwidth: The bandwidth is plotted

for each of the command loops and checked against the specified requirements.

The control loop bandwidth is also checked and compared to the bandwidth of

the chosen actuators.

The cost function defined above includes some weighting factors. These are the

design knobs which the designer uses to create the desired controller. If the control
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and/or command bandwidths are too large or too small, the designer adjusts these

weights and re-computes the control gain. This typically involves many iterations.

The designer may also find it necessary to move the zeros placed in the synthesis

model and restart the iterations from that point.

The next step in the design process is to test the feedback system. SIMULINK

and SystemBuild have built in capabilities for performing these tests. The first test is

to close the loop with the linear model and the controller. The resulting closed-loop

system is then tested. Next the controller is connected with the nonlinear model and

tested.

An important step in the testing process is to develop an accurate model of the

actuators. If the actuators are not modeled well, the software test of the controller

may indicate that the controller works as designed while an hardware-in-the-loop

test may show that the feedback system is unstable. This is usually caused by the

actuators not being able to respond fast enough to commands.

Once an accurate model of the actuators has been developed, the closed loop

software test is repeated with the actuator models in the loop. If the actuator models

are acurate and the controller design is correct, there should not be an apparent

difference in the performance of the controller.

The designed controller must be implemented on a platform capable of produc-

ing the required control signals and reading the given sensor outputs. Since personal

computers, or PCs have become very cost effective, the typical controller implementa-

tion is a PC microprocessor with input/output, or I/O cards. The I/O cards available

can produce or read analog voltages, pulse width modulated, or PWM signals, and

serial communications to name a few. The control algorithm is then programmed

using a high level language such as C or FORTRAN and then compiled to run on

3



the chosen PC. During programming, careful consideration must be given to initial-

izing and using the I/O cards. Timing is the most critical part of the programmed

controller.

The next step is hardware-in-the-loop , or HITL simulation, where the feedback

system is tested with some of the actual hardware which will be used to control the

aircraft. HITL testing is done in one or more stages.

"* Actuators and Sensors: The first stage is to include all of the actuators which

receive control signals directly, such as the elevators, rudder, and ailerons. The

sensors which measure the results of these actuators must also be included in

order to close the loop. After this initial test, other less critical actuators may

be added.

"* Control Inputs and Sensors: A possible second stage is to include the control

input device, such as a joystick for an unmanned aircraft, into the loop along

with the sensors required to measure the control inputs.

The most critical part of any hardware-in-the-loop test is calibration of the sen-

sors. The controller includes an algebraic conversion of the measured sensor outputs

to a signal that can be used directly by the controller. This algebraic conversion

requires calibration by determining the correct conversion constants.

The ultimate test of a designed controller is the flight test. Budget considera-

tions demand that the controller work perfectly the first time. The flight test phase

is usually performed in three stages:

e Test Stand: The first flight test is usually done in a laboratory facility on a test

stand which allows some degree of movement while restricting flight so that the

vehicle can not be damaged.

4



"* Tethered Flight: The next stage is typically a teathered flight. In this manner,

an experienced pilot can be standing by with a manual override switch to allow

direct manual control of the vehicle in the event of a problem.

"* Actual Flight: The final and ultimate test of the control design is the au-

tonomous flight test.

The main purpose of this report is to discuss the automation of the design

process which has just been summarized. The main tool used in this process is

Integrated Systems, Incorporated's AC100 package. Once the designer develops a

plant model and a controller using MATRIXx and SystemBuild, AC100 can be used

to implement and test the controller on actual hardware with a few pushes of a

button.

5



II. DEVELOPING EQUATIONS OF MOTION

A. BACKGROUND

There are several unmanned air vehicles, or UAV's, currently in use a 7).

Two of these are discussed in this report, the Bluebird and the AROD. The AROD

is described in the next section and the detailed development of its equations of

motion and computer modeling are covered. The Bluebird is discussed next. It is a

small conventional aircraft acquired as a test bed for testing guidance and navigation

systems. For a complete description and the development of the equations of motion

for Bluebird, see [Ref. 1].

B. DESCRIPTION OF AROD

The Airborne Remotely Operated Device, AROD is a vertical take-off and land-

ing, VTOL, aircraft originally designed by Sandia Research Laboratory in Albu-

querque, New Mexico. The AROD has been the subject of several theses at NPS and

this report expands on the work started by those individuals. For a detailed descrip-

tion of AROD refer to [Ref. 2, 3] and the Sandia Lab papers [Ref. 4, 5] as well as

the references therein. The AROD is shown in Figure 2.1 and its characteristics are

tabulated in Table 2.1.

A combination of the control vanes are used to exert the desired control forces

on the AROD. Roll control is obtained by deflecting all four vanes in the opposite

direction of the desired roll. Pitch and yaw are obtained by deflecting the pair of

vanes in the y and z planes respectively. The numbering of the vanes is shown in

6
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Figure 2.1: Airborne Remotely Operated Device, AROD

Figure 2.2 and the combinations of vanes required for roll, pitch and yaw are given

in Table 2.2.

There are three dynamic coupling effects which must be considered when de-

signing a control system for AROD. The first is the gyroscopic coupling due to the

large angular momentum of the propeller. Another dynamic coupling exists between

the vehicle attitude and the altitude-rate since thrust vectoring is required for trans-

lational movement. This coupling is depicted in Figure 2.3. The third effect is caused

by the propeller. As the air is accelerated through the propeller, it is also deflected
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TABLE 2.1: PHYSICAL CHARACTERISTICS OF AROD

Inlet Diameter, A 29.25 in
Propeller Radius, R 12 in

Exit Radius 23.375 in
Inlet Area Ratio 1.219
Exit Area Ratio 1.115
Exterior Contour Tapered Rear

Propeller Location, % chord 25 %
Number of Blades 3

Engine Speed, Max. 8000 rpm

Engine Speed, Nom. 6500 rpm

Tip Speed, Max. 838 fpm
Tip Speed, Nom. 680 fpm

Power Loading, BHIPRoIp) 7.25 HP/f 2

Mass Moment of Inertia, I 1.8241 slug - f'
Mass Moment of Inertia, Iy 1.7997 slug - f2

Mass Moment of Inertia, I 1.6147 slug - fl

Prop Mass Moment of Inertia, I,_ 0.0311 slug - f2

Prop Mass Moment of Inertia, I, 0.0067 slug - f 2

Prop Mass Moment of Inertia, 1, 0.0067 slug -

TABLE 2.2: VANE DEFLECTION COMBINATIONS FOR POSITIVE ANGLES

Vane Combination
Roll, ' V 1 + V2 + V3 + V4

Pitch, E V - V4

Yaw, ! V1 - V3

slightly causing a swirl effect. The result is that the air mass strikes the control vanes

at an angle proportional to the angular rate of the propeller. This creates a rolling

moment which is dependent on the throttle input.

8
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Figure 2.2: AROD Direction of Positive Vane Deflections

C. EQUATIONS OF MOTION

1. Notation

The notation used in this report is consistent with the previous work on the

AROD, see [Ref. 21 and references therein. Consider Figure 2.4, here:

"I {A} represents the coordinate system with basis vectors, XA, YA, and ZA.

"* ApQ represents the position of point Q, expressed in {A}.

"* AVQ represents the velocity of point Q, measured in {A} and expressed in {A}.

"* B(AVQ) represents the velocity of point Q, measured in {A}, and expressed in

{B}.

B AR is a rotation matrix from {B} to {A}, also called a direction cosine matrix.

A free vector in one coordinate system, is a vector that can be moved parallel

9



T*cos (P) is
All thrust used for lift
available while

T is used for T
lift. T'sin (T) is

used to move

in y direction

Figure 2.3: Coupling Between Altitude and Attitude

to itself without change. As a result, it can be expressed in another coordinate

system by using the rotation matrix. For example:

A(BV) = •R (BV)

"* A QB is the angular velocity of the {B} coordinate system with respect to {A},

and expressed in {A}.

"* B(Af1B) is the angular velocity of {B}, with respect to {A}, and expressed in

{B}.

"* Additional information can be added to the subscripts i.e., ApBO is the position

of the origin of { B}, expressed in { A}.

2. Coordinate Systems

In order to derive equations of motion for a rigid airplane, the following

coordinate systems and assumptions will be used:
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Figure 2.4: Relative Position of Coordinate Systems

"* {U} represents the inertial tangent plane coordinate system attached to Earth.

"* {B} represents the body fixed coordinate system.

"* {W} represents the wind axis coordinate system.

"* All sensors are located at the c.g. ( This assumption is used for simplification

only and can be relaxed as shown in [Ref. 2] )

"* The mass of the aircraft remains constant.

" Given a vector v, its derivative with respect to {B} is denoted as 1(v)

and its derivative with respect to {U} is denoted as (i)

The {B} coordinate system is a right handed system with XB defined as the thrust

axis. A positive roll rate, p, is clockwise when looking in the positive X direction.
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The positive direction for YB, the pitch axis, is out the right wing . A positive pitch

rate, q, is defined as clockwise looking in the positive Y direction. The ZB axis is the

yaw axis, and a positive yaw rate, r, is defined as clockwise, looking in the positive

Z direction.

The {W} coordinate system is defined with Xw aligned with the wind

incident on the aircraft. The angle a is the angle formed by the body x-y plane and

the positive Xw axis. The angle /3 is the angle formed by the body x-z plane and

the positive Yw axis.

To simplify the notation in places where it becomes cumbersome, the fol-

lowing definitions are introduced:

"* vQ represents the velocity of an arbitrary point, Q, measured and expressed in

{u}.

"* VBO represents the velocity of the origin of {B}, measured and expressed in

{U}, i.e., UVBo = VBO.

" 1 B represents the acceleration of {B} with respect to {U}, measured and ex-

pressed in {U}.

"BvQ represents the velocity of point Q, measured in {U} and expressed in {B},

i.e., B(UVQ) = BvQ.

"* WE represents the angular velocity of {B}, measured and expressed in {U}, i.e.,

USIB = -WE.

"* EWE represents the angular velocity of {B} measured in {U}, and expressed in

{B}, i.e., B(UfQB) = B WB.

"* 0 represents the appropriate size matrix with all elements equal to zero.

12



SI, represents the identity matrix of dimension n.

3. Spatial Orientation Using Euler Angles

The spatial orientation of a rigid body [Ref. 6] can be defined by the three

Euler angles, 0, 0, and Tl called roll, pitch and yaw and defined in Figure 2.5. The

Euler angles, in turn, can be used to define a rotation between two coordinate systems.

This rotation is obtained using Euler's theorem:

Any number of rotations about different axes through a point must, in

the end, remain equivalent to a single rotation.

For the case of conventional aircraft, a 3-2-1 rotation sequence is used [Ref. 7],

where the aircraft is yawed, pitched, and then rolled. In this case, 6 is small, and in

steady state flight is equal to the angle of attack, a. The angle 0 can be expected

to be anywhere from ± 60 deg in normal flight and can be anywhere from ± 180 deg

in acrobatic flight. T represents the heading of the aircraft and of course can range

from 0 to 360 deg. This euler angle rotation was used in modeling the Bluebird.

Euler angle rotations have an inherent singularity point when considering

euler angular rates. The singularity point for a 3-2-1 rotation is ( = 90 deg. There-

fore, the adopted convention for AROD is a 2-3-1 rotation which has a singularity

point at *I = 90 deg.

The transformation from inertial coordinates{U}, to body coordinates {B},

is carried out as follows, and is shown in Figure 2.5.

1. The inertial coordinate system is represented by the vector UV, with the

components x, y, and z. The first rotation is made about the y axis through an

angle 6. Now the vector is expressed as 2V with the components X2 , Y2, and z2.

13
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Figure 2.5: Y-Z-X Euler Angle Rotation Sequence

Since the rotation was about the y axis, the Y2 component remains unchanged.

The resulting elemental matrix is:

cose 0 -sinO]
M(O)= 0 1 0 (2.1)

sin E 0 cos J

2. Now the rotation is made about the new z axis, z2, through an angle *I. This

results in a third coordinate system with the vector expressed as 3V, and having

components x3 , y3, and z3. This rotation does not change the z3 component.

The resulting elemental matrix is:

M()= -sin* cosPO . (2.2)
0 0 1

14



3. Lastly, the rotation about the x3 axis through an angle 4) is made to give the

vector expressed in body coordinates, 'V. Now the resulting elemental matrix

is:

1 0 0]
M(0) = cos 0 sin D. (2.3)

0 - sin 6 cos4) J

When the matrices are multiplied together in the correct sequence, M(4b)M(T')M(O),

the result is the BR direction cosine matrix, expressed in terms of Euler angles as:

[ cosq cose sinqV - cosT sine ]
- cos4 sinI cosa + sin4P cosa cosO cosP cos4 sinqi cose + sinl)cosO (2.4)
sint sin'ii cosa + cos4) sinO - sin4b cosT - sinib sin* sinO + cos4) cose

The next step is to develop the kinematic differential equations that describe

the change in Euler angles with time. Following the method used in (Ref. 73, the

matrix of differential equations, Q?, can be written as a sum of individual Euler angle

rates:

7_4) r0
= M(O)) [ + M(4))M(VI) 0 + M(4()M(%P)M(() .40a (2.5)

0 -

When the matrix algebra in Equation 2.5 is done, the resulting kinematic differential

equations for p, q, and r are given as:

[p sin'I 0

q 0 cos 4 cos 'l sin (2.6)
r 0 -sinO cos1Pcos4

The matrix on the right hnd side of Equation 2.6 is invertible for all TI # 2, and

can be used to solve for the Euler angle rates, 4, 6 and il:

[9J= 0 cc 4s Cec T -sin4 secq q (2.7)
S0 sinO •os 4Dr

The time history of the Euler angles can be obtained by integrating Equation 2.7.

15



4. Derivation of the Equations of Motion

For a general aircraft model with six degrees of freedom the derivation of

the equations of motion can be broken into two parts. The first part is the motion

of an arbitrary rigid body in free space. This motion depends only on the linear

and angular momenta of the rigid body which can be divided into linear and angular

equations. The second part is an examination of all of the forces acting on that rigid

body. These forces are aerodynamic, gravitational, and propulsive. The aerodynamic

and propulsive forces are specific to the aircraft being modeled and are characterized

by the stability and control derivatives described later in this thesis.

a. Linear Equations

The linear equations are developed using Newton's Law, F = ma. Be-

cause the sensors are attached to the body of the aircraft, the equations are written

in the {B} coordinate system. Matrix equations avoid the repetition of writing equa-

tions in terms of x, y, and z. First the position of the aircraft center of gravity, or

c.g., (the origin of {B}) is determined as UPBO. Next Coriolis' theorem is applied

to obtain linear velocities for the aircraft. Coriolis' theorem is then applied a second

time to derive the equation for linear accelerations. First, define:

UVBO U UPBO (2.8)

Both sides of Equation 2.8 are premultiplied by BR to get:

URUVBo =URUPBo

or

B VBO BPBO (2.9)
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Now consider Coriolis' theorem:

d
A -A + x A, (2.10)

di

where A and IA use the notation for derivatives previously defined in Section 1 The

term w x A represents the difference between the relative velocity as measured from

the rotating and non-rotating axes [Ref. 8].

Equation 2.10 is applied to BvB in Equation 2.9 to get:

BVBO = d VB + B WB XB VB, (2.11)

Newton's law can now be written as:

UF = m Ua

= Mn BO, (2.12)

where UF is the total external force applied to the aircraft c.g. Equation 2.12 is

premultiplied by gBR to obtain the result:

BF = MB RU6BO

= m BiBO. (2.13)

when Equation 2.11 is substituted into Equation 2.13, the final result for BF is:

BF = (d ( B + BWB XBVB)

dt
d B B B= M -T vB + M WB X VB. (2.14)

b. Angular Equations

The angular equations are derived using Euler's Law for preservation of

angular momentum. These equations are derived in the {B} coordinate system for
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the c.g. by applying Coriolis' theorem to the equation for Euler's Law:

ULBO = UNBo, (2.15)

where ULBO is the angular momentum of the aircraft and UNBO is the total external

moment applied to the aircraft c.g. Then, premultiplying Equation 2.15 by BR gives:

BLBO = BRUNBO, (2.16)

Using Coriolis' theorem in Equation 2.10, ELBO can be rewritten as:

BLBO -- d LBO + BWB X BLBO, (2.17)

The angular momentum, BLBO, is defined as the sum of the product of the inertia

tensor, IB, and the body's angular velocity, BWB, and the product of the inertia

tensor IR, and the angular velocity of any rotating parts BWR, or:

BL •= IB BWB + IR BWR, (2.18)

where IR and BwR are the moment of inertia and the angular velocity of the rotating

part, respectively. Note that additional rotating parts can be accounted for by adding

additional terms to Equation 2.18. With a single propeller the equation becomes:

BL ! Is BwB + IP (BWB + BWP), (2.19)

where Ip and Bwp are the moment of inertia and the angular velocity of the propeller,

respectively. When this term is substituted into Equation 2.17, the result is:

Bd
BLBO = td(IBWB + IP(BwB + BWP)) + BWB X (IBBWB + Ip(BWB + BWp)), (2.20)

For simplification, define the total inertia tensor, IT as:

IT •- B + Ip (2.21)

18



Collecting terms, Equation 2.20 becomes:

B di
W_ (ITB WB + IpBtop) + W IBB+ IpBLOP), (2.22)

BLBO ý_t+'BX(TW

Carrying out the differentiation in Equation 2.22 yields:

BLBO : IT d B d+ I BP W + BWB x (ITBWB + IpBWP). (2.23)
wB- + p-w I

Since j(BWB) = BSjB and -(BwR) = 0 if we assume a constant angular velocity for

the propeller, Equation 2.23 can be simplified to:

BLBO = ITBUWB + BWB X (ITBwB + IpBwp) (2.24)

Now the result in Equation 2.24 can be substituted into Equation 2.16:

BNBO = ITBLýB + BWB x (ITBwB + IpBwp). (2.25)

The term lPBwP can be disregarded if it is insignificant compared to IB and BWB

[Ref. 9]. This term is neglected in modeling the Bluebird see [Ref. 1]. For the case

of AROD this term is significant and is not negi -ted.

c. State Equations

Now that the kinematic equations of motion have been developed in

matrix form, these equations can be assembled into a state-space representation of

the equations of motion. First, Equations 2.14 and 2.25 can be written as:

[BF 1 [ m vB + M (SB Xv B vB) ]
BN ITB•B + BWB X (JTBWB + IpBwp)

Equation 2.26 can be rearranged to yield:

d [MBVM _W BV) +BF) (227
dt ITBWB -BWB X (ITB[WB + IpBWP) +BN) (
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The terms on the left hand side of Equation 2.27 can be normalized by multiplying

by - and I`, with the final result:

d rVB 1 + (2B28)
di BwB T I B LOB X (I/rBWB + IpBwp) + IT IBN

d. Forces and Moments

Equation 2.28 gives the kinematic equations of motion for a rigid body.

The next step is to examine the forces BF and moments BN acting on the rigid body.

These forces and moments are due to gravity, aerodynamics, and propulsion, and are

written as:
BF BFGRA V + BFPROP + BFAERO (-9
[EN = BNPROP + BNAERO

Gravitational Forces: The gravitational forces acting on the air-

craft, B FGRAV, can be determined by rotating UFGRAv with the appropriate rotation

matrix, where:

UFGRAV = 0 (2.30)

Then:

BFGRAV = BuR UFGRAV. (2.31)

Aerodynamic Forces and Moments: The aerodynamic force and

moment terms are determined by using first-order Taylor series expansion around a

given nominal operating point. This operating point is the state chosen to represent

the aircraft's flight condition. Each term in the series is a partial derivative of BF or

BN with respect to the aerodynamic variables, 1L, a, /3, p, q, r [Ref. 7, 10]:

FAERO = ,F•,x' + WFii' + ,5FtAA + FO. (2.32)
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Similarly, moment terms can be written as:

NAERO = 6N'Xz' + 5N.,&' + 6NA + NO, (2.33)

where x' is given by:
U

U

0

x' = . (2.34)
2U

2U
rb
2U J

and i' is given as:

(2.35)

Notice that i' contains only two elements. The other derivatives axe negligible and

therefore not included. Control inputs are represented by the vector A:

A 4 6 (2.36)
b.I

where 6e, 6,, and 6. are the elevator, rudder, and aileron inputs, respectively. Equa-

tions 2.32-2.36 can now be combined as follows:

[WFAERO 1] - e9C , 9C., 9C
WNFAERO -- XS{-x + -x, + -aA + CFO}, (2.37)

where pV2 , S = diag{SS, , S, Sb, Sc, Sb}, and C is the matrix of non-dimensional

stability derivatives differentiated with respect to the terms defined in Equation 2.34,

2.35, or 2.36. 22 is defined as:

CL, CLO CL. CL, CL, CL.
Cy•, Cy Cy.0 Cy, CY, Cy,.

aC , CDU CDO CD. CD,, CDq CD. (2.38)
Ox' = C1,, CIO C1  C,, Ciq C,,.

C., C.0 C',. C., C., Cm.'
L Cn, Cnp C,8  Cn, C-, C-,. J

21



8C is very similar to 5L,, except that only the 6 and / terms are normally significant,

leaving a 6 x 2 matrix rather than a square matrix. The term ýLc is defined as:

CL 6, CL 6 r CL 6,

Cy6. Cy6  CY.
CC A O C o 0 D 6 , CD 6, (2.39)

Cm6 e Cm6 r Cm6

CFO is defined to be the vector of steady state coefficients:

CDO

CLO

CFO CLO (2.40)
CIO
C,,o

representing conditions in trimmed, balanced flight. This definition is similar to the

definition used by Roskam [Ref. 9]. In other references, the term CFO can refer to the

nominal value of the coefficient at a = 0. However, in the Taylor series expansion

it is more natural to use the first definition of CFO; therefore, it will be used in the

following derivation and modeling. The stability and control derivatives are usually

computed in the wind axis coordinate system, {W}. The transformation from {W}

to {B} is performed in the same fashion as the Euler angle transformations mentioned

earlier. The rotation matrix, BW R, is a function of a and /f, and is expressed as:

B cosacos/3 -cosaesin/ -sina]
R= sinI cos/ 0 (2.41)

sin a cos -sin a sin cos a

The rotation from {W} to {B} is made by premultiplying the force or moment vector

by BR-

Since lift and drag are defined as positive along the negative ZB and XB
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axes, we define FAERO and NAERO as:

FAERO= [YI and NAERO = m[ . (2.42)
-L n

The negative sign on D and L can be moved into the S matrix for convenience, so

that the new matrix is:

S - diag{-S, S, -S, Sb, Sc, Sb} (2.43)

In order to write Equation 2.37 in state space form, state variables must be defined.

The most commonly used notation to use for the state vector is to use:

U

V

wo (2.44)
p

q
r

However, the terms x' and i' in Equations 2.32 and 2.33 cannot be used directly as

states. It is easy to define:

M': x - x

-, (2.45)

where:

1M1 1 b c b (2.46)
M diag" ~VT' VT' VT' 2VT'2VT'2VT

and:
0 V 2 VC 7 

(2.47)0 0 1b 0 0 0

are matrices of appropriate dimensions. The complete expression for 'FAEao and

B NAER can now be written as:

BFAER 0 B + -,M x+ - f'i+ -A} (2.48)
BNAERO J WR 09.I 0il aA2
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and can be substituted into Equation 2.28.

Propulsive Forces and Moments: The propulsive forces and mo-

ments, BFPROP and BNPROP, are computed directly in the body coordinate system

{B} and are expressed as:

BPE = T , (2.49)

and:

BNPRoP = T. (2.50)
TT.,

where the Ti's represent the forces or moments due to thrust. Computation of propul-

sive forces and moments depends on each particular engine installation, and must he

determined for the individual aircraft modeled. For the AROD, the thrust is aligned

in the XB direction and located at the c.g. yielding:

BFPROP 
(2.50

and:

BNPRoP-= 0 (2.52)
0

Equations 2.31, 2.51, and 2.52 can now be substituted into Equation 2.28:

d [ BVBO] [BWBX 0 1 [VBO]

"d BWB 0 -BI(BWB X (BITBWB + IPBWP)) B[WB

S0 ][BF0 BI BN ,(2.53)

where:

rBE F r B FGRAV 1 [FPROP1 T
B BN 0 + I B T+

{ + .CM{ + .... ++L A (2.54)
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e. Complete Equations of Motion

In order to write Equation 2.28 in state space form, the terms associated

with i' must be collected and moved to the left hand side, along with the other time

derivative terms, BE)O and Bk)B. Let:

wRT=[ B and My 1  BI (2.55)

then the complete non-linear equations of motion for any aircraft can be expressed

in state space form as follows [Ref. 11]:

d [EBVE 0  X1 -B [[WBX 0 1 +
dt B WB 0 -- BI[( [WB X (BITB WB + IpBwP)) I

MT1B B VM] + MB.1 BEFGRAV]
•"I W"q •1"-" a' • ]BB0

[BFPROP 1T +1
B NPR J 'T + 4,.9(CF, + 3%FA) (2.56)

U1 6 = 'RBVBO, (2.57)

and:

S= S(A)BW, (2.58)

where:

A =(2.59)

[1 -cos tan sin$tan'I]
S(A) 0 cos 4 sec * - sin 4bsec ] (2.60)

0 sinO Cos 4

and:

X = I 6 - MT'BSwT % M 9ý '. (2.61)

P is the position vector of the aircraft, and S(A) is the matrix of kinematic differential

equations based on Euler angles.
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III. COMPUTER MODELING

Now that the full non-linear equations of motion have been developed, the next

step is to model the aircraft on a computer. Notice that Equations 2.56, 2.57, and

2.58 are in a generic format. That is, they could be used to represent the AROD

or the Bluebird or any propeller driven aircraft provided the correct values are used

for the stability and control derivatives, c, c, and L, as well as the forces andax,, ai,,l X as& ela hefre n

moments due to thrust, BFPROP and BNPROP. For this reason, it is convenient to

create a model which accepts these values from a generic input file. This allows the

same model to be used for different aircraft by simply changing the input data to

correspond to the new aircraft. Validation of the model can then be accomplished

by entering the appropriate data for a well known aircraft, such as a Cessna, and

comparing the results of the model to existing data.

For this report it was desirable to begin with an existing computer model that

had already been tested in hardware-in-the-loop simulation so that the results could

be compared. The model and controller chosen for the AROD were developed and

tested by N. Sivashankar. The SystemBuildmodel he developed is explained here

since he chose not to present it in his report [Ref. 3]. For his hardware-in-the-loop

test, he developed C code for the controller to run on a 386 PC and developed a

model of AROD in VisSim to run on a 486 PC. His hardware-in-the-loop setup is

outlined later in Chapter VI Section A and in his report.

The SIMULINK model developed in this section was not used to develop a con-

troller and is presented here as an example of how to implement the equations of

motion in a SIMULINK block diagram. For an example of how to implement these
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equations in SIMULINK for the Bluebird see [Ref. 11.

A. BASIC NONLINEAR MODEL

The basic nonlinear model is essentially the same for both SIMULINK and Sys-

temBuild. The state derivative equations, Equation 2.56, are implemented and fed

into an integrator block which feeds back into the derivative equations.

1. Basic SIMULINK Model

The SIMULINK model is shown in Figure 3.1, and is simply a block repre-

senting the state derivative equations, Equation 2.56, and an integrator block in a

feedback loop. The SIMULINK implementation of the equations of motion is simpli-

fied by using a MATLAB function block. The program listing for this function block

is given in Appendix A. Notice that the stability and control derivatives as well as

the forces and moments due to thrust are found in a separate MATLAB script file.

Appendix A shows this file with the values for AROD in a hover. This MATLAB

function has deliberately not been optimized to clearly show how the equations of

motion are implemented. The forces and moments due to thrust were measured by

B. Stoney, [Ref. 12], and are given by:

TPROP = 0.0297 &p, - 104.7, (3.1)

and:

'PROP = -0.0542 TPRoP - 0.9138, (3.2)

2. Basic SystemBuild Model

The state derivative equations could be implemented on SystemBuild in a

similar manner using an user code block. This involves writing a C or FORTRAN
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Arod Non-Linear Model

dtarMux -1* H MATLAB -- Ay

MUX ~Function 0

deMuA geLxdot -- " X DmxA

4et~x rp Integrators

Mjxl I

4u~Sp Iv Iw 7 pf~ l lteta I psi

Figure 3.1: SIMULINK Block Diagram of the Equations Of Motion

function which is then linked into the SystemBuild diagram. The Bluebird model

used for hardware-in-the-loop testing was developed in this way by J. Byerly. For a

detailed explanation of how to implement the nonlinear model with user code blocks

see his report [Ref. 13].

The nonlinear SystemBuild model of AROD is shown in Appendix B. The

highest level consists of an input block for the constants, a SuperBlock for the aircraft

kinematics, and a SuperBlock for all of the integrators. The kinematics SuperBlock is

made up of three SuperBlocks representing the angular velocity equations, the linear

velocity equations, and the Euler angular rates. The 'L.dot-eq' SuperBlock imple-

ments Equation 2.58 directly. The 'lin-velocity.eq' SuperBlock adds Equation 2.31,
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Equation 2.51, and the first term of Equation 2.53. The result is the linear portion

(the ' BVBO portion) of Equation 2.56. The 'ang-velocity-eq' SuperBlock implements

the angular portion (the -tBoWB portion) of Equation 2.56. These values are then fed

into an integrator block to determine the states.

B. DISCRETE MODEL

Since the AC100 Model C30 can not autornatically generate code for a continu-

ous system, t:ie model must be discretized. The goal is to simulate a continuous time

system uwing a discrete time system. SIMULINK and SystemBuild do this by using a

very small time step size with a continuous type integration algorithm. The continu-

ous roodel can be discretized in SystemBuild with the 'Transform SuperBlock' option

under the 'Build' menu. Simply choose a small step time and the SuperBlocks are

automatically transformed. The only difference is that all integrators will be replaced

by 'discrete' integrators as shown in Figure 3.2, where T is the step time chosen for

the discrete system.

1_ - T__yz
S z+T

Figure 3.2: Transformation of an Integrator from Continuous Time to
Discrete Time

The step time must be evaluated with the model to determine the optimum

step time. If the step time is too large the discrete system will not be an accurate
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model. If the step time is too small the computation time necessary may slow down

the discrete system to the point where it becomes unstable.

C. TESTING THE MODEL

The performance of the aircraft model must be verified. This is usually ac-

complished by replacing the stability and control values with those of a well known

aircraft such as a Cessna. The nonlinear model can then be trimmed at a given

flight condition and the eigen values of the resulting linear model can be compared

to existing data.

1. Testing the SIMULINK Model

The SIMULINK model of AROD presented here was trimmed for the hover

condition and linearized. The resulting state-space matrices were identical to the

state-space matrices determined by D. Kuechenmeister [Ref. 21. Since this model

was not used to develop a controller, no further testing was completed.

2. Testing the SystemBuild Model

The SystemBuild model of AROD developed by N. Sivashankar also pro-

duced the same state-space matrices when trimmed and linearized for hovered flight.

Refer to his report for more details on the testing of his model [Ref. 3].
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IV. DESIGN AND SOFTWARE TESTING OF
THE CONTROLLER

Now that a valid linear model has been developed, the controller can be designed.

First, the designer determines which states or outputs are available for feedback and

the control inputs to be used by the controller. For the AROD, the following states

are measured:
P
q

S- r (4.1)
0

The inputs are elevator, rudder, aileron, and rpm (revolutions per minute of the

propeller):

AlnPut " b (4.2)

H, synthesis was used to design the state feedback controller. It is outlined in the

next section.

A. H,,SYNTHESIS MODEL

Consider Figure 4.1. Here w represents exogeneous inputs, z represents regu-

lated outputs, P represents the plant model, y represents the actual plant output,

and uC is the control input created by the controller. Using the notation in [Ref. 141,

suppose the plant is partitioned as:

[P I 12 (4.3)
P 21 P22
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W i

W2  Pz

Figure 4.1: Ho. Synthesis Model

so that:

z = P1 1 w + P12 u y = P21 w + P22 u (4.4)

Then u and y can be eliminated using u = Ky, to obtain:

Z = [/:I1+ P12 K (I- P22 K)- 1 P21] w, (4.5)

This is normally denoted by:

z = F1(P, K) w (4.6)

The Ho, optimization problem is then:

Find K which minimizes IIFI(P, K)II.o (4.7)
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For the AROD, the input w, shown in Figure 4.1 is defined as:

roll rate command]
w= pitch command (4.8)

yaw command

and the input w 2 is:

W2 = rpm input (4.9)

The control commands are:

[celevator]
= rudder (4.10)

aileron

The signals x, and x2 are:

X1 [] X2=[] (4.11)

The designer changes the cost function weights W1, W2, and W3 to obtain the desired

bandwidth in the command and control loops. [Ref. 15]

B. DISCRETE CONTROLLER

The controller obtained using H.. synthesis has the following state-space repre-

sentation:

C: { i° = Bo(y1 - yc) (4.12)u =+ D( Y2

Since C will be implemented on the digital computer it must be discretized first:

CD : { (X,)K+, = AT B, (y, - Yc)K (4.13)

UK = Cc ZCK + D. Y2 K

where AT is the sampling period of the discrete time system.

1. SystemBuild Discrete Controller

The SystemBuild implementation of a discrete controller uses a state-space

block with the appropriate values as a matrix gain. The discrete controller for AROD
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is shown in Appendix B Figure B.4. Notice that for this implementation AT has been

multiplied into the B matrix instead of the control gain matrix.

C. CLOSED-LOOP SOFTWARE TESTING

The procedure for closed-loop testing of the controller is basically the same for

both continuous and discrete time systems. The model and controller are connected

as shown in Figure 4.2. Note that the discrete time controller could be tested with

the continuous time model if the outputs of the discrete controller are routed through

a zero-order hold before being input to the continuous model. This step is done auto-

matically by SystemBuild when discrete and continuous SuperBlocks are connected

within the same block diagram.

1. SystemBuild Testing

SystemBuild testing can be accomplished in several ways. All of these

methods require the user to define a time vector. For a 40 Hertz controller the

time vector might be:

t = 0 : 0.025 : 20; (4.14)

Which produces a vector of 801 elements, starting at zero, spaced at 0.025 seconds,

and ending after 20 seconds. The user can define an input vector in MATRIXx

or connect signal generator blocks inside the model. The user then selects 'Analyze

SuperBlock' from the 'Build' menu and enters the appropriate values. Typing 'sim' at

the MATRIXx prompt will begin the test and create a matrix of output values. The

output matrix can be broken into vectors and observed using the 'plot' command.

The results of this test for the AROD are presented in [Ref. 3].
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Y1 Model ------ Y2
or

Plant
P

Yc

uc

Controller
K

Figure 4.2: Closed-Loop Block Diagram

2. AC100 Model C30 Testing

The discrete model can be tested on the AC100 Model C30 by following

the procedures outlined later in Chapter VI Section B without connecting any of the

hardware. The closed-loop connections are left in the model and the desired outputs

are selected for the Interactive Animation display. The test results will be identical

to those found above since the C30 processor is using the exact same closed-loop

system as SystemBuild.

35



V. MODELING ACTUATORS AND SENSORS

For both the AROD and the Bluebird, all of the control surfaces are actuated by

Futaba FP-S34 servo motors. These actuators where originally modeled by Sandia

Labs as a second order system with ( = 0.6 and w, = 20 radians.

H() = W2 + ' (5.1)

This section examines the development of an accurate model for these actuators.

A. ACTUATOR STEP RESPONSE

The step response of a system can be used to determine its transfer function

[Ref. 16]. An example step response is shown in Figure 5.1. This response is typical

for an underdamped second order system. To determine the transfer function, it is

necessary to determine the values for Mp and 4•.

The measured step response for the Futaba servos is shown in Figure 5.2 with

the step response for the transfer function given in Equation 5.1. This step response

was measured using the data acquisition feature of the AC100 Model C30 and the

test setup outlined in the next chapter.

The values for Mp and t r were measured as:

Mp = 0.1197 t, = .059 , (5.2)

With these values a second order transfer function can be created by calculating the

natural frequency w,, and the damping ratio ( using the following formulae:

ln(Mp) , (5.3)

C ln(Mr)2+ 7r2(
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Figure 5.1: Typical Step Response of an Underdamped System

and:

S=. ,(5.4)

These calculations resulted in:

Wn = 19.94 • = .559 , (5.5)

Since the step response did not match well with the step response of the calculated

transfer function, a limited frequency response of the actuators was measured.

B. ACTUATOR FREQUENCY RESPONSE

The actuators were given a sinusoidal command input and the response was

measured for frequencies of 1, 2, 3, and 4 Hertz. This procedure could have been

duplicated for many more frequencies and the result would be a complete frequency

response for the actuators. Figure 5.3 shows the frequency response at 3 Hertz. Each
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Figure 5.2: Step Response of Actuator and Second Order Model

pole in a system will result in a total of 90 degrees of phase shift in the frequency

response and half, or 45 degrees, of this shift occurs at the natural frequency [Ref.

16]. Since the measured phase difference was approximately 180 degrees at 3 Hertz,

the servo motors are more accurately modeled as fourth order systems.

One possible fourth order model was determined and is given in Figure 5.4.

Figure 5.5 shows the step response of the actuator and the fourth order model step

response.

C. ACTUATOR SENSORS

Since the hardware-in-the-loop test will not cause the aircraft to move, aircraft

sensors such as Inertial Measuring Units and Air Data Sensors can not be used.
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Figure 5.3: Frequency Response of an Actuator at 3 Hertz

202 34 39
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Figure 5.4: Fourth Order Actuator Model

Therefore the actuator positions must be determined. This is accomplished using an

angular position sensor. The measured vane positions can then be used to determine

the states of the aircraft so that an hardware-in-the-loop test can be preformed.

The Futaba servos used do not include a separate position sensor. There is an

internal control circuit which determines which direction and how far to move the

servo based on the input signal. This input signal is a Pulse Width Modulated, or
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Figure 5.5: Step R •onse of Actuator and Fourth Order Model

PWM, pulse. The length of the pulse determines how far the servo is to turn. The

previous hardware-in-the-loop test defined the throw of these actuators as being from

0 to 200 degrees with the center position at 100 degrees. For this report the center

position is defined as 0 degrees with full throw being plus or minus 100 degrees. A

pulse width of approximately 0.3 milli-seconds corresponds to -100 degrees while

a pulse width of approximately 2.4 milli-seconds corresponds to +100 degrees. The

internal control circuit includes a small potentiometer in a feedback loop to control the

motor. The servos were modified to include wires connected to the center and ground

leads of this potentiometer as shown in Figure 5.6. The voltage across these two wires

was then measured and divided by 5 volts, (the supply voltage), to determine the

position as a ratio of the total allowable motion.

40



Servo Motor
+ 5V r---------------------------------------------

PWM ,W Servo Sensor Tap
4- Control
' Circuit

GND __Sensor GND

Figure 5.6: Actuator Sensors

This sensor design depends on a constant 5 volts being applied to the positive

end of the potentiometer. Since the same voltage also supplies power to the servo

motor, this voltage actually changes slightly while the motor is turning. The servo

motors draw approximately 8 milli-amperes of current when they are not moving and

up to 200 milli-amperes when they are moving. The increased current draw during

motion causes a drop in the supply voltage. Since the measured voltage is always

divided by 5 volts the result is a noisy sensor position. This noise was measured as

approximately one half of one degree in each of the four vanes. Since these sensed

positions are used to determine the aircraft states, noise enters all of the states. The

most pronounced effect of this noise shows up in the roll-rate p because all of the

vanes add together to determine the aileron command. A 0.5 deg change in all of the

vanes from one measurement to the next is equivalent to an aileron control surface

movement of 80 degrees per second.

To reduce this noise an additional wire was added so that the positive voltage
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on the potentiometer could be measured at the same time as the center voltage.

Figure 5.7 shows the new sensor wiring.

Servo Motor High Tap
+5Vr __ _ _

PWM Servo Center Tap. Control•
S Circuit

GND GND

Figure 5.7: Modified Actuator Sensors

Now the ratio of the voltage measured from the ground to the center tap, over

the voltage from the ground to the high tap gives the position as a percentage of

total motion.

VCenteTap _ % of total motion (5.6)
VHighTap

The result of the new sensor design was an order of magnitude reduction in the sensor

noise. Figure 5.8 shows the measured response of an actuator to a 2 Hertz sine wave

input. The two wire response was measured prior to adding the additional wire to

the sensor. The responses have been time shifted for clarity.

D. UNDER-SAMPLING

When continuous time signals are sampled at less than the Nyquist frequency

and then reconstructed, the resulting waveform will have low frequeicy components.
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Figure 5.8: Noise Comparison of Actuator Sensors

This effect is known as under-sampling [Ref. 17].

A common example of under-sampling can be seen on television. The video

camera essentially takes samples of the continuous time world and presents them in

a discrete fashion. The human eye captures these discrete pictures and filters them

so that the mind perceives continuous motion. When the video camera samples a

rotating object such as a wagon wheel at a frequency less than the Nyquist rate for

the rotation speed, the wheel may appear to turn backwards. Figure 5.9 shows how a

37 Hertz sine wave, sampled at 20 Hertz, appears to be a 3 Hertz sine wave. The solid

line is the continuous time sine wave, the asterisk symbols are the 20 Hertz samples,

and the dashed line is the continuous time estimate of the samples. Notice that the

reconstructed wave starts out negative. If this were a mathematical representation of
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the wagon wheel, it would appear to turn backwards. The effects of under-sampling

were eliminated in the AROD by the technique used to reduce aliasing which is

discussed next.
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Figure 5.9: Under-Sampling of a Continuous Time Signal

E. ANTI-ALIASING

Sampling a continuous time signal results in an infinite train of 'copies' of the

sampled signal repeating at integer multiples of the sampling frequency [Ref. 17].

Aliasing occurs when the sampling frequency is such that these 'copies' overlap. Fig-

ure 5.10 shows the frequency response of an example signal, the sampled frequency

response when sampled at 50 Hertz, and the sampled frequency response when sam-

pled at 16 Hertz. The area between the triangles in the third response is called
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aliasing.

10[
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Figure 5.10: Example of a Continuous Time Signal and Aliasing

The effects of aliasing were reduced in the AROD hardware-in-the-loop test by

adding an anti-aliasing filter. The sensor voltages were sampled at 1000 Hertz. The

ratio of the two voltages was then fed into a third order low-pass Butterworth filter

with a cut-off frequency of 10 Hertz. The output of this filter is then sampled at 40

Hertz eliminating aliasing of any noise in the frequency range of interest. Appendix B

includes the SystemBuild block diagrams for the anti-aliasing filters. The discrete

low-pass filter was implemented using the 'FIIR' command in MATRIXx. The result-

ing state-space matrix was then put into the SystemBuild block diagram. A separate

filter was necessary for each of the four vanes. The state-space representation of the
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filter is given by:

F=[AFBF] (5.7)F= CF DF

The values for the discrete Butterworth low-pass filter state-space matrix were:

- 1.9353D + 00 -9.3912D - 01 0.OOOOD + 00 2.9146D - 05
F 1.0000D + 00 0.0000D + 00 0.0000D + 00 0.0000D + 00 (583.9353D + 00 6.0879D - 02 9.3906D - 01 2.9146D - 05 ' (5.8)

3.9353D + 00 6.0879D - 02 1.9391D + 00 2.9146D - 05

For the AROD, the frequency response of interest is from 0 to 3 Hertz (approx-

imately 20 radians). The noise is estimated to have major components at 40 Hertz

and harmonics of 40 since the PWM frequency is 40 Hertz. By sampling at 1000

Hertz, we are assuming that the noise level is insignificant for frequencies above 500

Hertz. The 10 Hertz cutoff frequency on the filter is designed to eliminate the noise

at, and above 40 Hertz.
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VI. HARDWARE-IN-THE-LOOP TESTING

The most critical phase of testing is the hardware-in-the-loop test of a con-

troller. This is usually the final validation of a controller prior to an actual flight

test. Typically this involves the actual control computer, actuators and some or all

of the actual sensors. In the case of the AROD, the only sensors that can be used

for this test are the servo-motor position sensors. Since no motion is involved, the

IMU, GPS, and Air Data sensors would not produce usable data and therefore these

sensors must be modeled along with the aircraft.

The controller is typically implemented on a microprocessor capable of interfac-

ing with the required hardware. In this case a 486 PC type computer is the intended

control computer. For the first hardware-in-the-loop test, the AC100 Model C30 will

serve as the control computer and as the plant model computer. Later, the con-

troller will be separated and implemented on the 486 PC. Before discussing the new

hardware-in-the-loop test setup, the previous test setup is presented for comparison.

A. PREVIOUS TEST SETUP

Before automation of hardware-in-the-loop testing, the aerospace controls en-

gineer had to rely on computer scientists or know how to program in a high level

language. For his hardware-in-the-loop test, N. Sivashankar wrote C code for the

controller and for all of the necessary I/O drivers. His setup is presented in his re-

port, [Ref. 31, and briefly outlined here. The complete setup is shown in Figure 6.1.

The 386 PC runs the controller and outputs PWM signals to the vanes. The 486 PC
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senses the vane positions and computes the new states. The 486 PC then sends out

analog signals to simulate the angular rate sensors and the euler angle sensors.

PC386 sesrotusPC486
C Code VisSim

Controller vane sevs vane ( AROD )
Icommands positions I

Figure 6.1: Previous Setup for Hardware-In-The--Loop Simulation

The basic configuration of the 386 PC is shown in Figure 6.2. The 386 PC

reads the analog inputs and converts the measured values to the correct units for

the controller. The new control commands are then computed and sent out by the

counter/timer board as PWM signals.

roll rate--.........------- vane I
pitch rate, CIO-AD16Jr -------------- PC386 Quartz vane2

yaw rate_. C Code Counter vane3
pitchy_._ AID card --------- Controller ........ (PWM)
yaw -------- vane4

commands vane positions (future)

Figure 6.2: Configuration of the Data Acquisition Cards on the 386 PC

The configuration of the 486 PC is shown in Figure 6.3. The vane sensor voltages

are reii by VisSim and then used to calculate the new aircraft states. The angular

rates p, q, and r and the angles 0 and ¢ are then sent out as analog signals to the

386 PC simulating the angular sensors.

The most significant problem of this hardware-in-the-loop test setup was the

speed of the AROD model. The VisSim model of AROD could not be run in real time,
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pitcr rate vanel
Srate CIO-DDA06 ......... PC486 PCL - 812 vane2

yaw rate VisSim vane3
pitch- DIA card...........-----(AROD)..... AID card
yaw -- I vane4

Figure 6.3: Configuration of the Data Acquisition Cards on the 486 PC

thus the controller had to be artificially slowed to 4 Hertz. The control algorithm

was implemented in C-code as a function call which was driven by an interrupt. By

design, this interrupt should have been at a rate of 40 Hertz. Since the VisSim model

could not produce updated states at this rate, the interrupt was slowed to 4 Hertz.

In this way, the controller performed as if it were running at 40 Hertz while actually

running at 4 Hertz. For more details refer to [Ref. 3].

B. AC100 GRAPHICAL USER INTERFACE

The new hardware-in-the-loop test setup utilizes Integrated Systems, Incorpo-

r •ed's AC100 Model C30. The AC100 Graphical User Interface, or GUI, is the

workstation users link to all of the necessary software tools for modeling and testing.

Prior to using the GUI, the user must 'source' the 'aclOOsetup' file. This is done by

typing:

'source $ISI/AC100/bin/aclOOsetup.sh'

at the unix prompt. This line can also be included in the '.login' file so that the

'acl00setup.sh' file is automatically run each time the user logs in to the workstation.

This section assumes that the user has manually entered MATRIXx previously and

is using the GUI for the first time now that the controller and model are complete.
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The AC 100 manuals refer to a model and controller as a project, [Ref. 18, 19, 20]

with the project name being the name of the highest level SuperBlock in the diagram.

There are standard files which must be present in the local directory for each project

which have common names and the AC100 uses file extensions to separate files within

a project. It is required to use a separate directory for each project to avoid using

the project files from one project with the standard files of another project.

The first of these standard files is the animation configuration file, (animation.cfg).

Each project will have a slightly different 'animation.cfg' file, but it must have that

name. To create this file, type 'makeproject' at the unix prompt. The program will

assume that the project name is the same as the directory name. If this is true, the

user may accept all of the default settings by hitting 'enter' at each prompt.

The next standard file is the 'target-config.cfg' file. To create this file the user

types 'retarget' at the unix prompt. The user will be asked for the 'acl00hostname'

which is either 'ACl00' or 'america'. All of the remaining defaults should be selected.

These files are only created once for each project. Now that these basic files have

been set up, the user types 'aclOO' at the unix prompt to start the GUI. The GUI

is used with the mouse and a single left mouse button click will activate the selected

function. Figure 6.4 shows the AC100 GUI.

The basic project file containing all of the required information about the model

and controller including the input and output names is the real-time file. This file is

created by selecting 'Generate Real-Time Code' from the SystemBuild 'Build' menu

and selecting the top level SuperBlock from the list. The file name can be specified

and defaults to the name of the SuperBlock selected with the '.rtf' extension. The

user can then exit MATRIXx and select 'Autocode'.
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Figure 6.4: AC100 Graphical User Interface

The next step is to build the Interactive Animation, or IA, display to be used

during the hardware-in-the-loop test. The user will first need to determine which

outputs to display and which inputs are desired for interaction ,,ith the running

model and controller. The user may need to add inputs and outputs to get the

decired results.

1. Interactive Animation

The user clicks on the 'Interactive Animation Builder' block to design the

durinterf are w orking with test . The user Thelmain IA picture for the AROD

hardware-in-the-loop test is shown in Figure 6.5. Once in the IA Builder, the user

double-clicks on any blank area to bring up the palette of display icons. The Inter-
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Figure 6.5: Interactive Animation Display for AROD Controller

active Animation section of the SystemBuild manual [Ref. 21] and the AC100 User's

Guide [Ref. 19] have details on all of the available icons and how to edit them for

specific needs. The user then selects 'Load RTF' and enters the name of the '.rtf' file.

The user then connects all of the icons to the respective inputs and outputs using

the same connection procedures as in SystemBuild. If the user wants to display an

input from one of the hardware connections, i.e., an A/D input, an extra output will

have to be added to the model. Inside the model the input is then connected to

the new output through an unity gain block. Once the IA picture is complete and

all of the inputs and outputs have been connected, the user selects save. Additional
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pictures can be created in the same manner. The main picture should be saved as

'project name. pic'.

Additional pictures, such as a calibration screen, can be 'chained' using

the 'process' icon. The user must then edit the 'animation.cfg' file and add 'file-

name.pic' under the 'PROCESS-PICTURES' section where 'filename' is the name

of the 'chained' picture. The IA calibration picture used for the AROD is shown in

Figure 6.8.

2. Hardware Connection Editor

The Hardware Connection Editor, or HCE, screen is shown in Figure 6.6

and explained in the AC100 Reference Manual [Ref. 18]. The individual hardware

modules are further explained in the AC100 Supplemental Reference Manual [Ref.

22]. The HCE is used to make connections to hardware and also to the IA picture.

All connections to the IA picture will be completed automatically and should not be

changed. Before invoking the HCE, the user should place a copy of the file 'c-c30.hce'

in the project directory. This file can be copied from the 'c:\aclOOc3O\station' direc-

tory on the AC100. The first screen of the HCE deals with inputs to the model and the

second screen deals with the outputs. Inputs will initially show 'MONITORINPUT'

as the 'type' and are changed by selecting 'Device-Type'. If the correct 'cc30.hce'

file is in the current project directory, the user can use the arrow keys or the mouse to

select the desired hardware for connection. The module field, 'mod', will change to 1

for all of the hardware options and must be changed to the correct module number.

The module numbers differ according to which C30 is being used and are given in

Table 6.1. Next the user selects the channel number, 'ch#' which is 1 to 1000 for

each of the serial ports and 1 to 16 for both the 'IPHiADC' and the 'IP-PWM'. Each
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Use left mouse button, tab, shlift-tab, or return to select items.

l~its Use middle mouse button on toggle items for pull-down menu's.

chan label(1:10) tuppe mod ch# initial-value final-value

1 roll.rate_ MONITOR-INPUT 0 0 0 0

2 pitchcomm MONITOR-INPUT 0 0 1.5708 1.5708

3 yaw-comman MONITOR-INPUT 0 0 0 0

4 theta.dist MONITOR-INPUT 0 0 0 0

S psiLdist MONITOR-INPUT 0 0 0 0

6 roll-torqu MONITOR-INPUT 0 0 0 0
7 pitch.torq MONITOR-INPUT 0 0 0 0

8 yawtorque MONITOR-INPUT 0 0 0 0

9 rprnsettin MONITOR-INPUT 0 0 6387.2 6387.2

10 VI-center IP-HiADC 1 2 0 0
11 V2_center IPHiADC 1 4 0 0

12 V3_center IPMiADC 1 6 0 0

13 V4_center IP-HiA0C I a 0 0

14 hw-switch MONITOR-INPUT 0 0 0 0

115 vlvO MONITOR-INPUT 0 0 0.532 0.532

116 v2_vO MONITOR-INPUT 0 0 0.5333 0.5333

Device-Type nodule Channel.Number

MONITOR-INPUT 0 0

Initial.Ualue ......... .. 0.

Nininum..Ualue ........... -i. OE+37 ftaximmu.Ualue .......... 1.0E+37

Offset ................ :. 0. Scale-Factor .......... i.

SbHwInputToUuerHooks.. disconnected SbInputFromUserHook..: connected

ICANCEL Grouping Viewing-attributee Selection.node D OMNE
bySB-channel initial-and_ finalvalues single

Figure 6.6: Hardware Connection Editor

'IPSERIAL' module has two serial ports referred to as 'chanA' and 'chanB'. The

Ich#' field refers to the data channel. Each input or output variable will require an

individual channel. The ACI00 Supplemental Reference Manual [Ref. 22] also talks

about the hardware channel number. This number is a fixed value and refers to the

hardware address of that I/O device. The outputs are initialized to 'NO-DEVICE'

and are connected in a similar manner.
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TABLE 6.1: C30 HARDWARE MODULE NUMBERS

AC100 America
IP-SERIAL 2 or 3 1 or 3
IP-HiADC 1 2
IPPWM 4 4

a. Serial Connections

The SERIAL modules can be used for input and/or output [Ref. 22]

pages 118-135. The serial modules were used for the Bluebird hardware-in-the-loop

test and the AROD Flight Management Unit test. The Bluebird has an Inertial

Measuring Unit which measures linear accelerations, angular rates, and euler angles.

This information is available to the controller through a serial port. The serial

information is a 40 byte string of hex characters terminated by a return character.

This format differs from the format expected by the C30, however, the user can edit

the 'user.ser.c' file and specify any desired format for the data. For more information

on serial interfacing with the IMU see [Ref. 23].

b. Analog-to-Digital Connections

The HiADC module is used for input only [Ref. 22] pages 110-117. Any

analog voltage signal can be sampled and used by SystemBuild in a digital format.

The SystemBuild block diagram can then use the input in units of volts, or convert

the number to some other units. Section 3 below discusses the conversion from volts

to degrees used for the AROD hardware-in-the-loop test.
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c. Pulse Width Modulation Connections

The PWM module has many uses for both input and output [Ref. 22]

pages 105-109. Note that the actual name of this module is 'IP_68332' but is referred

to here as 'PWM' since this is the only mode used for this report. In the PWM

mode, the user specifies the duty cycle as the output from the SystemBuild diagram.

The user can also edit the 'c-c30.hce' file to specify the frequency of the pulses. The

refresh frequency is integer parameter one which is labeled as 11 (column 10) under

the output section of this file. Figure 6.7 depicts the relevant quantities for a PWM

signal.

+5V

T

Figure 6.7: Timing Example for Pulse Width Modulation

The spacing from the leading edge of one pulse to the next is called the

period T, and is the inverse of the refresh frequency or:

__1

T= - (6.1)
f

The duty cycle is calculated as the percentage of time the pulse is 'high' which is +5

Volts in this case.
tp

% Duty cycle = ! (6.2)
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The refresh frequency for the AROD hardware-in-the-loop test was chosen to be equal

to the controller frequency of 40 Hertz. This gives a period T of 0.025 seconds or

25 milli-seconds. The minimum pulse width required for the servos is approximately

0.3 milli-seconds so:
0.3

Min. % Duty Cycle =- = 0.012 (6.3)
25

This corresponds to a vane deflection of -100 degrees. The maximum pulse width

required for a +100 degree deflection is approximately 2.4 milli-seconds so:

2.4
Max. % Duty Cycle = - = 0.096 (6.4)

25

The pulse width corresponding to a centered position, or zero degrees of deflection,

is approximately 1.05 milli-seconds so:

1.05
Centered % Duty Cycle = 25 = 0.041 (6.5)

Combining these gives:

% Duty Cycle = 0.00041 • (Desired deflection in degrees) + 0.053 (6.6)

The algebraic block 'degrees.toPWM' included in each of the four vane SuperBlocks

and shown in Figure B.10 implements Equation 6.6.

3. Sensor Calibration

Before the sensors can be used reliably b- 'he controller, they must be

calibrated. Due to small changes in the operating .ntages of the power supply,

calibration is required each time the controller is started. For the original hardware-

in-the-loop test, a separate C code program was run to calibrate the actuator sensors.

Each time the controller is started the I/O devices must be initialized. This results

in small changes in the measured voltages on the analog to digital I/O device from
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one initialization to the next. For this reason the 'chained' IA picture was used so

that the I/O would not have to be re-initialized after calibration. The procedure for

Vane Calibration
Vane 1 Vane 2

0.0000 0.00S0.0000 0.00

Vane 3 [~jVane 4NYarn-___. 100 00000

volts" Degrees Wolti. Degres

0.0000 0.00 0.0000 0.00
U. NI93T81?[ --• [,I o • [• ................ ........ ...... • 1- = ...1.......

Figure 6.8: Interactive Animation Calibration Screen

calibration involves measuring the sensed voltage for vane positions of -100 deg, + 100

deg, and zero degrees. The model uses these measured voltages in the equation used

to convert the measured sensor voltage into the correct vane position in degrees:

Vane position =(V,,,as - V0) X 2007

After starting the controller, the calibration routine is completed as follows:

F The user clicks on the 'calibrate' button to bring up the calibration screen.
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e Next the user clicks on the 'Cal-mode' switch which connects the calibration

inputs to the actuators.

e The voltage for 0 degrees is then entered in the 'VO' input for each vane.

* Next the position inputs are all changed to +100 degrees and the displayed

voltage is input with the 'Plus 100' bar for each vane.

* Finally, the position inputs are all changed to -100 degrees and the 'Minus 100'

inputs are changed accordingly.

The user can then switch the 'Cal-Mode' switch back to 'off' and click on the 'Return'

button.

4. Data Acquisition Editor

A very useful feature of the AC100 is real-time data acquisition. The user

can record any or all of the inputs and outputs to a C30 project. In this way, the

user can get a very detailed analysis of the performance of a particular model and/or

controller. The user first selects 'Data Acquisition Editor' from the AC100 GUI,

Figure 6.4. The user will be presented with the screen shown in Figure 6.9. To record

an input, simply select 'ON' under the 'setting' column. If the 'decimation-factor' is

left at '1' then the value of that input will be recorded every time step. To select an

output, toggle the 'Display' selector at the bottom of the screen from 'SBJNPUTS'

to 'SB.OUTPUTS'. When all of the desired inputs and outputs have been selected,

click 'DONE'. The AC100 GUI will return.

Once the user selects 'Download and Run', the 'AC100 rtmpg Control Win-

dow' and the Interactive Animation display, Figure 6.5, will appear. To start record-

ing data, the user selects 'START DATA ACQUISITION'. This will create a file in
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Use left mouse button, tab, shift-tab, or return to select items.
Hintul Use middle mouse button on toggle items for pull-down menu's.

chan label(1:10) type mod ch# setting decimation-factor

1 roll-rate_ MONITORINPUl 0 OFF I count EL.>
2 pitch.cormm MONITOR-INPUT 0 0 OFF I count

3 yaw.comran MONITOR-INPUT 0 0 OFF I count

4 theta.dist MONITOR-INPUT 0 0 OFF 1 count

5 ps±idist MONITOR-INPUT 0 0 OFF 1 count
6 roll-torqu MONITOR-INPUT 0 0 OFF 1 count

7 pitch.torq MONITOR-INPUT 0 0 OFF I count

8 yaw-.torque MONITOR-INPUT 0 0 OFF I count
9 rpm.eettin MONITOR-INPUT 0 0 OFF 1 count

10 Vl-center IPHIADC 1 2 ON 1 count
11 V2_center IPHiAOC 1 4 ON 1 count

12 V3_center IP_HiROC 1 6 ON I count
13 V4_center IPHiADC 1 8 ON I count

14 hwswitch MONITOR_-INPUT 0 0 OFF I count
15 vLvO MONITOR_-INPUT 0 0 OFF 1 count
16 v2_vO MONITOR_ INPUT 0 0 OFF I count '

DA.Setting ............ :. OFF

DA.DecimationFactor.. 1

ICRNELI Edit-.Operation DisplayJ Selection-MI'ode ON
'modify..config-.set I SBINPUTS single

Figure 6.9: Data Acquisition Editor

the project directory with the project name and '_l.raw' appended. The number will

be automatically incremented so that many data files may be collected. The but-

ton will also change to 'STOP DATA ACQUISITION'. If data acquisition is started

before 'Start Controller', the data acquisition will begin with the first time step of

the controller. Data acquisition stops automatically if the controller is stopped or

rebooted.

After selecting 'REBOOT CONTROLLER', the user is returned to the

AC100 GUI. The user then selects 'Convert raw data'. This will create a file with

the same name as the '.raw' file with '.dat' as the file extension. This data file can
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then be loaded directly into MATRIXx. The MATRIXx variable names will be the

same as those used as the input or output names in the SystemBuild model. These

variables will be vectors with lengths depending on the amount of time that data was

recorded. Plots of these variables are made the same as for any MATRIXx variable.

C. CONNECTING THE HARDWARE

Now that all of the software tools have been developed, the hardware must be

physically connected to the control computer. Figure 6.10 shows the complete setup

for the hardware-in-the-loop test using the AC100 Model C30. The SPARC work-

station is the user's main interface with the controller. The Interactive Animation

picture is updated via the ethernet connection with the C30. The C30 runs the

controller, the aircraft model, and interfaces with all of the hardware.

The wiring harness was developed so that the first test flight of AROD could

be done with the control computer remaining on the ground and connected to the

AROD with a tether. The wiring harness and tether are designed to supply power

to the AROD and to pro- ide all of the control signals and return all of the sensor

outputs. Figure 6.11 shows the connector end of the tether. For this test, only the 5

volt power lines and the vane signals were used.

The servo motors have two sets of wires emerging from the case. Each set

contains a red, white, and black wire. The wires attached to the narrow side of the

servos are the input wires and the wires attached to the wide side are the sensor

outputs. Table 6.2 lists the function of each of these wires.

The pin diagrams for each of the C30 Modules are in [Ref. 22]. Figure 6.12

shows the complete wiring for the AROD hardware-in-the-loop test on the C30. The

wiring harness box is a PC shell containing screw terminal blocks and a PC power
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Sun SPARC 10
Workstation

Interactive Animation

Ethernet

AC100 Model C30
r- -------------------- I

486 PC Motherboard

C30 DSP

PWM A/D IRS2321 RS232
L t--------------------------

Wiring
Harness Sensors

Servos

Figure 6.10: AC100 Model C30 Hardware-In-The-Loop Setup

supply as well as a 24 Volt power supply. The wire connections internal to the wiring

harness are not shown.

62



1. Vane #1 Signal 13. *24 Volt Power

2. Vane #2 Signal 14. 24 Volt Ground
3. Vane #3 signal 15. sheild

4. Vane #4 signal 16. Vane #I Sensor
S. Throttle Signal 17. Vane 02 Sensor

S. Pitch Signal 1. Vane #3 Sensor
7. Yaw Signal 19. Vane #4 Sensor

R. Kill switch 20.
9. Kill switch 21. Roll Rate Sensor
10. Tachometer 22. Pitch Rate Sensor
11. +S Volt Power 23. Yaw Rate Sensor
12. S Volt Ground 24.

Figure 6.11: Connector on end of Wiring Harness Tether

TABLE 6.2: SERVO MOTOR WIRING

I Control Inputs Sensor Outputs
Red +5 Volts High Tap

White PWM Input Center Tap
Black Ground Ground
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F e d l-e dTether F•_ -Wit 17L

1ý l[ l_ lak t Servos

Black 1-9
Red vl 26
White vX 27
Red v2 28 50"White v2" 29 Pin

Sed 
v 30 Screw To C30 HiADC Module

-- 120V AC White v 31 Terminal
.dv4 32

White v4 33

Wiring

Harness

Black 1

BrownL 2
Red 3 50

Pinreen 4 Screw To C30 PWM Module

Orange 5 Terminal
Blue 6

Figure 6.12: AC100 Model C30 Hardware-In-The-Loop Test Wiring Dia-
gram
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VII. RESULTS, CONCLUSIONS, AND

RECOMMENDATIONS

A. HARDWARE-IN-THE-LOOP TEST RESULTS

The hardware-in-the-loop test of N. Sivashankar's controller showed the con-

troller to be unstable. Analyzing the actuators as discussed in Chapter V revealed

that the controller was changing the commanded position of the vanes faster than

the vanes could respond. The controller gain was re-computed using the original syn-

thesis model and the Hc,,, theory procedure outlined in Chapter IV Section A. The

cost function weighting matrices were adjusted to reduce the control loop bandwidth

to less than 2 radians to account for the limited performance of the actuators. The

resulting bandwidth for the control and command loops are compared to the originals

in Figure 7.1. The first three sub-plots show the old (solid) and new (dashed) control

loop bandwidth. The second three sub-plots show the old and new command loop

bandwidth.

The new control gain was then entered into the controller and tested. The

hardware-in-the-loop test of the new controller was successful and showed slower

responses to disturbances as expected. For a comparison, the new controller was

subjected to the same series of disturbances as the original controller. Figure 7.2

shows the SystemBuild disturbance rejection plot from the original controller. The

hardware-in-the-loop disturbance rejection plot is similar with some noise [Ref. 3]

but was not available for reproduction in this report. The disturbances introduced

for all of these tests are listed in Table 7.1. Figure 7.3 shows the pitch and yaw errors
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recorded from the hardware-in-the-loop test of the new controller. Notice that there

is relatively little noise in the new controller due to the new sensor design.

TABLE 7.1: PITCH AND YAW DISTURBANCES IN RADIANS

Time (seconds) 0 4 9 15
Pitch Disturbance 0.1 0.2 0 0.2
Yaw Disturbance -0.1 0 -0.2 0.2

B. CONCLUSIONS

Based on the data presented in this thesis the following conclusions are drawn:

"* Automation using the AC100 Model C30 dramatically improves the time to

first prototype. Valuable time is saved by not having to write code for the

control computer and the hardware I/O drivers. The user only needs a basic

understanding of the hardware and it's requirements. All required code is

generated automatically by the AC100 software.

"* Improvements to the model or controller can be implemented and tested imme-

diately. For the same reasons as above, any changes made at the block diagram

level can be tested immediately with a few mouse clicks.

"* Real-time data acquisition allows for detailed analysis of test results. Since all

of the inputs and outputs can be recorded at each time step, the data can be

scrutinized thoroughly after a test. This is a tremendous help when trying to

find errors created by improper timing.

"* Hardware-in-the-loop testing does not fully validate a controller if the test is

not performed real-time. The original controller was considered stable after

initial hardware-in-the-loop testing, but was not stable when tested real-time.
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C. RECOMMENDATIONS

Considering the conclusions introduced above and the experience gained while

conducting this thesis, the following recommendations are made:

"* Investigate sending IA data to additional ethernet address and capturing data

for Virtual Prototying on Designer's Workbench. Previous thesis work has

demonstrated the extraordinary benefits of Virtual Prototyping. Presently the

data from an AC100 Model C30 hardware-in-the-loop test would have to be

recorded and then moved to another file for use by Designer's Workbench.

Sending data directly from the AC100 Model C30 to Designer's Workbench

would allow real-time 3-Dimensional representation of the hardware-in-the-loop

test data.

" Investigate using graphics programs with C30 for field display of data. Cur-

rently the AC100 Model C30 sends all of the test data to the workstation for

display. The AC100 Model C30 would be very useful for a tethered flight test

of the AROD, however, this would currently require a portable workstation to

display the data from the AC100 Model C30. The data could easily be dis-

played on the AC100 Model C30 display with the use of a DOS or Windows

graphics interface.

" Incorporate the AC100 Model C30 into the avionics design course work. Valu-

able experience is gained when testing a controller with hardware-in-the-loop.

Students learn to consider all of the requirements for interfacing such as:

- signal conversion (i.e., analog to digital, volts to degrees, degrees to PWM,

etc.)
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- power requirements

- timing (when control signals are generated vice when the sensor output is

available)

- interference (interaction of control signals, Radio Frequency interference)

- data bandwidth (information required verses information available
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APPENDIX A

MATLAB FILES

A. GETXDOT.M

function [xdot] = get.xdot(invect)

% Function computes x-dot given an input vector which is x and u-c

% muxed together. u-c is first four and x is last nine. The inputs

% order is elevator, rudder, aileron, rpm-setting. The states are

% u, v, w, p, q, r, phi, theta, psi.

%%%%%%%% First step is to demux the input vector

u-c=invect(1:4);

% u.c(1)=delta e (elevator)

% u.c(2)=delta r (rudder)

% u-c(3)=delta a (aileron)

drpm = u-c(4); %(throttle)

v=invect(5:7);

% v(1)=u (x velocity)

% v(2)=v (y velocity)

% v(3)=w (z velocity)

omega=invect(8: 10);
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p=-omega(l); %(roll rate)

q=omega(2); %(pitch rate)

r=omega(3); %(yaw rate)

lambda=invect(1 1:13);

phi=lambda(1); %(bank angle)

theta=lambda(2); %(pitch angle)

psi=lambda(3); %(yaw angle)

x=[ v; omega; lambda; I ;

%%%%%%%% Next get constant values for:

% m,Ib,Ir,S,Cfo,dCfdx,dCfdd,M 1 ,rho,Ar,g

constval;

% constval is a Matlab script file, not a function, and sets the

% values in the Matlab environment for use by all functions.

%%%%%%%% Form omega cross matrix and compute Vt and q

wx=[ 0 -r q; r 0 -p; -q p 0] ;

Vt=sqrt(v(1)A 2+v(2)A ?+v(3)A 2);

qbar=.5* rho* VtA 2;

%%%%%%%% Form sine and cosine abreviations

ch=cos(phi);

sh=sin(phi);
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ct=~cos(theta);

st=sin(theta);

cs=cos(psi);

ss=sin(psi);

%%%%%%%%Form force due to gravity

%B U

%R * F =force due to gravity, moment =0

%U g

% 2-3-1 rotation

RubFg=[ -cs* st* g

(ch* ss* st+sh* ct)* g

(ch* ct-sh* ss* st)* g

%%%%%%%%Form Rwb (transform wind coordinates to body

alpha=asin(v(2));

beta=-asin(v(3));

Rwb=[ cos(alpha)* cos(beta) -cos(alpha)* sin(beta) -sin(alpha)

sin(beta) cos(beta) 0

sin(alpha)* cos(beta) -sin(alpha)* sin(beta) cos(alpha)

%%%%%%%%System is of the form

% x = A x+ B u+ C where uis the control inputs and
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% C is a combination of gravity and

% other influences

%%%% Form "A" matrix

%%%% USING THRUST VS RPM FROM BOB STONEY'S TEST RUNS

T=0.0297* drpm-104.7;

Vi=sqrt(T/2/Ar/rho);

% NOTE: derivatives are non-dimentionalized with qi (induced velocity)

% so add u to the induced velocity for total q

qt=.5* rho* (v(1)+Vi)A 2;

It=Ib+Ir;

O=zeros(3,3);

L-eye(3);

% The generic 'A'matrix would be:

% A=([ -wx 0; 0 -It\ (wx* It)] + [(I/m)* Rwb 0; 0 It\ Rwb ] • q* S* dCfdx*

M1);

A=[ -wx 0; 0 -It\ (wx* It)]
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%%%% Form "B" matrix

% Note: control surface derivatives are non-dimentionalized using

% characteristic lengths from rotor

B1=[ (I/m)* Rwb 0; 0 It\ I] * qt* Sd* dCfdd;

%%%%% LT relates the duct swirl to the moment 1 produced by thrust

LT=-0.0542* T-0.9138;

wr=[ drpm* 2* pi/60;0;0]

B2=1 T/m; 0; 0; -It\ (Q LT; 0; 0;] +(wx* Ir* wr))

%%%% Form "C" matrix

% Generic 'C'matrix would be

% C=[ (I/m)* RubFg; 0;0;0; 1 +[ (I/m)* Rwb 0; 0 It\ Rwb] • qbar* S* Cfo;

C=[ RubFg; 0;0;0;];

%%%% Form Drag matrix

% Note: this is not aerodynamic drag, this is an estimate of the
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% parasitic drag elements.

sb=6.7708;

s=S(2,2);

SU=Sign(v(l));

sv=sign(v(2));

sw=sign(v(3));

sp=sigu(p);

sq=sign(q);

sr=sign(r);

Sdrag=diag([ su* Ar,sv* sb,sw* (s+sb),sp* .5* s,sq* .7* (s+sb),sr* .5* sbl )

Vm=[ (v.A 2)/rn; It\ (omega.A 2)1

D=rho* diag(Cfo)* Sdrag* Vm;

%%%%%%%% Form lambda dot using 2-3-1 rotation

ldot=[ p-q* ch* ss/cs+r* sh* ss/cs

q* ch/cs-r* sh/cs

q* sh+r* cli

%%%%%%%% Form totals

vw-dot=A* [ v; omega I Bl* u-c(1:3)+B2+C+D;

x-dot=[ vw.Aot; Idot; 1
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B. CONSTVAL.M

% [ m,Ib,Ir,S,Sd,Cfo,dCfdx,dCfdd,Ml,rho,Ar,g]

% This file returns all of the constants for the arod EOM

% Hover condition =) all aero derivatives are zero

% Total body mass

m=2.6419; % slugs

% Body mass moment of inertia

Ib=[ 1.2312 0 0; 0 3.9548 0; 0 0 3.9825] ; %slug ftA 2

% Prop mass moment of inertia

Ir=[ 0.00898 0 0; 0 0.0045 0; 0 0 0.0045] ; %slug ftA 2

% Standard length matrix for wings

ss=9.4444; bw=5.7; cbarw=2.165;

S=diag([ -ss,ss,-ss,ss* bw,ss* cbarw,ss* bw] );

% Standard length matrix for control surfaces

sp=pi; bp=l; cbarp=l;

Sd=diag([ -sp,sp,-sp,sp* bp,sp* cbarp,sp* bp]);

% Cfo (used as a drag term in all three axes

Cfo=[ -.015; -.015; -.015; -0.015; -0.015; -0.015;];

% dCf/d3

dCfdx=O;
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% dCf/dx..dot=o for this model

% dCfdxd=[ I

% dCf/ddelta

dCfdd=[ zeros(3,3); 0 0 1.438; -1.233 0 0; 0 -1.233 0]

% MI

Vt=1;

M1=diag([ 1/Vt,l/Vt,1/Vt,bw/(2* Vt),cbarw/(2* Vt),bw/(2* Vt)] )

% rho

rho=.002377; %slugs/ftA 3

%area

R=I;

Ar=pi* R;

% gravity

g=32.174; %ft/secA 2
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APPENDIX B

MATRIXx BLOCK DIAGRAMS

A. AROD SystemBuild BLOCK DIAGRAMS

The AROD SystemBuild block diagram contains the following SuperBlocks:

"* actuators: Figure B. 1 shows the SuperBlock containing 4 actuator SuperBlocks,

one for each vane.

"* actuator-1: Figure B.2 shows the actuator model for the first vane and is

identical to the other vane actuators.

"* actuator_2: Not shown.

"* actuator_3: Not shown.

"* actuatorA4: Not shown.

"* ang-velocity.eq: Figure B.3 shows the SuperBlock for the angular velocity

equations. The values for the body and rotor inertia matrices are listed in

Table 2.1.

"* dcont-wind: Figure B.4 shows the controller SuperBlock for the AROD. The

saturation block limits the throw of the vanes to ±15 degrees. The two algebraic

blocks convert the command signals to vanes signals in degrees, and the vane

signals back to command signals in radians respectively.

"* filters: Figure B.5 shows the four anti-aliasing filters discussed in Chapter V

Section E. The values for the four vane filters are given in Equation 5.8.
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"* integ.ang-vel: Not shown.

"* integIin-vel: Not shown.

"* Integ.sim: This SuperBlock contains the SuperBlocks 'integ.ang.vel', 'in-

tegJin.vel', and 'int-ang-sim'. Each of these SuperBlocks contain three dis-

crete integrators as shown in Figure 3.2 with the appropriate initial values.

The 'intang.sim' SuperBlock also contains two sum blocks to add in the per-

turbations for 0 and a0.

"* int-ang.sim: Not shown.

"* kinematics: Figure B.6 shows the kinematics SuperBlock which contains the

'lin-velocity-eq', 'ang-velocity.eq', and 'L.dot-eq' SuperBlocks.

"" lin-velocity-eq: Figure B.7 shows the equations for the linear forces acting

on the aircraft. The 'T.value' SuperBlock contains Equation 3.1 and block 95

is the force due to gravity.

"* L-dot-eq: Not shown. This SuperBlock is an implementation of Equation 2.58.

"* lrm-nncompute: Figure B.8 computes the angular momentum terms. Blocks

5, 6, and 98 contain the appropriate stability derivatives and block 7 includes

the moment due to propeller thrust given in Equation 3.2.

"* nltst4_hw: Figure B.9 shows the top level SuperBlock for the hardware-in-

the-loop test. The inputs and outputs from this SuperBlock are listed in the

'nl.tst4_hw.rtf' file and used in the Hardware Connection Editor.

"* T.value: Not shown. This SuperBlock is Equation 3.1.
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"* vanel: Figure B.1O shows the Superblock for vane one and is identical to the

other three SuperBlocks. Block 6 shows the conversion from degrees to percent

duty cycle discussed in Section c of Chapter VI. Block 4 is the algebraic block

discussed in Section 3 of Chapter VI.

"* vane2: Not shown.

"* vane3: Not shown.

"* vane4: Not shown.

"* vane4x: Figure B.11 shows the 'vane4x' SuperBlock which contains a Su-

perBlock for each of the four vanes and the 'filters' SuperBlock.
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Figure B.3: Angular Velocity Equation Superblock
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Figure B.A: Discrete Controller Superblock
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